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Two prominent ideas in the study of decision making have been that organisms behave near-optimally,
and that they use simple heuristic rules. These principles might be operating in different types of tasks,
but this possibility cannot be fully investigated without a direct, rigorous comparison within a single task.
Such a comparison was lacking in most previous studies, because (a) the optimal decision rule was
simple, (b) no simple suboptimal rules were considered, (c) it was unclear what was optimal, or (d) a
simple rule could closely approximate the optimal rule. Here, we used a perceptual decision-making task
in which the optimal decision rule is well-defined and complex, and makes qualitatively distinct
predictions from many simple suboptimal rules. We find that all simple rules tested fail to describe
human behavior, that the optimal rule accounts well for the data, and that several complex suboptimal
rules are indistinguishable from the optimal one. Moreover, we found evidence that the optimal model
is close to the true model: First, the better the trial-to-trial predictions of a suboptimal model agree with
those of the optimal model, the better that suboptimal model fits; second, our estimate of the Kullback–
Leibler divergence between the optimal model and the true model is not significantly different from zero.
When observers receive no feedback, the optimal model still describes behavior best, suggesting that
sensory uncertainty is implicitly represented and taken into account. Beyond the task and models studied
here, our results have implications for best practices of model comparison.
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Many forms of human perception seem close to the ideal set by
Bayesian optimality (Geisler, 2011; Körding et al., 2007), accord-
ing to which the brain maximizes performance when given noisy
and ambiguous sensory input. In most of these cases, such as in
cue combination (e.g., Alais & Burr, 2004; Ernst & Banks, 2002;
Gu, Angelaki, & Deangelis, 2008; for more examples, see Trom-
mershäuser, Körding, & Landy, 2011), the optimal decision rule is
simple. It has been argued that when the optimal decision rule is
complex, the brain has an incentive to use a computationally
simple and reasonably effective, though strictly suboptimal, deci-
sion rule—also called a heuristic (Gigerenzer & Gaissmaier, 2011;
Simon, 1956).

Evidence for this proposal has been mixed. On the one hand,
there is no strong evidence for optimality in complex tasks. In
some studies that claim that people follow a complex optimal rule,

simple suboptimal rules were not considered (e.g., Geisler &
Perry, 2009; see also Bowers & Davis, 2012). In other studies, the
optimal rule fitted about equally well as a simple rule (Mazyar, van
den Berg, Seilheimer, & Ma, 2013; Palmer, Verghese, & Pavel,
2000; Qamar et al., 2013). In some perceptual experiments, the
optimal rule outperformed simple rules, but only a few simple
rules were tested (Ma, Navalpakkam, Beck, van den Berg, &
Pouget, 2011; Ma, Shen, Dziugaite, & van den Berg, 2015).
Finally, it has been argued that in reports of near-optimality in
cognitive tasks (Chater, Tenenbaum, & Yuille, 2006; Norris,
2006), the optimal model was given excessive flexibility in order
to fit the data (Bowers & Davis, 2012; Gigerenzer, 2004; Jones &
Love, 2011), making the optimality label suspect.

On the other hand, some claims of suboptimality might be
premature. For ball catching, a suboptimal but simple “gaze heu-
ristic” has been proposed (Dienes & McLeod, 1996; McLeod,
Reed, & Dienes, 2003). However, in such complex sensorimotor
tasks, the definition of optimality depends on largely unknown
costs, making it difficult to conclusively claim that behavior is
suboptimal; in fact, in a simplified setting, ball catching was found
to be near-optimal (Faisal & Wolpert, 2009; López-Moliner, Field,
& Wann, 2007).

Thus, optimality and simplicity have, so far, not been directly
compared in a strongly distinguishing paradigm. In addition, none
of the studies mentioned in the previous two paragraphs made an
effort to establish how much room there is for an untested model
to fit better than the study’s favored model, whether optimal or
simple. To address both issues, we used a visual categorization
task that did not suffer from the shortcomings we mentioned in the
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previous two paragraphs. Optimality was not ambiguous, and there
are many plausible simple rules that make substantially different
predictions from the optimal rule. Moreover, in analyzing the data
from this task, we attempt to establish how close our best-fitting
model is to the unknown true model.

We want to emphasize that in this article, simplicity refers to the
number of operations in the observer’s decision rule. In previous
literature, simplicity has been used in at least two other meanings.
The first is the simplicity of the observer’s interpretation of a
visual scene. The “simplicity principle,” initiated by Wertheimer
and other Gestalt psychologists, states that the observer reports the
simplest interpretation of a visual scene that is consistent with the
sensory input, for example, leading to a preference for perceiving
continuity (Chater, 1996). In our task, the two hypotheses about
the state of the world, left and right, are equally complex in this
sense. The second meaning is simplicity in terms of the number of
parameters (Spiegelhalter, Best, Carlin, & Van Der Linde, 2002).
In our case, all the models we will discuss below have two
parameters, and the only thing that differs is the observer’s deci-
sion rule. Thus, we are not talking about simplicity from the point
of view of the experimenter comparing models, but about simplic-
ity of a decision strategy for the observer doing the task.

Experiment 1

We designed our experiment such that the statistical structure of
the task was easy for subjects to learn, but optimal inference was
hard. The task was a visual target categorization task on four
oriented stimuli. On each trial, we presented observers with a
target and three identical distractors (Figure 1A); the target orien-
tation and the (common) distractor orientation were drawn inde-
pendently from the same Gaussian distribution with a mean of
vertical and a standard deviation of !s " 9.06° (Figure 1B).
Subjects reported whether the target stimulus (the unique stimulus)

was tilted to the right or to the left of vertical. Correctness
feedback was provided on each trial.

Apparatus and Stimuli

Subjects were seated at a viewing distance of approximately 60
cm. All stimuli were displayed on a 21-in. LCD monitor with a
refresh rate of 60 Hz and a resolution of 1,280 # 1024 pixels. The
background luminance was approximately 29.3 cd/m2. Each stim-
ulus display contained four stimuli, placed on an invisible circle
centered at the center of the screen and with a radius of 5° of
visual angle. The angular positions of the stimuli were $135°, $45°,
45°, and 135° relative to the positive horizontal axis. Each stimulus
was a Gabor patch with a peak luminance of approximately 35.2
cd/m2, a spatial frequency of 3.13 cycles per degree, a standard
deviation of 8.18 pixels, and a phase of 0. On each trial, three
of the stimuli were identical; these were distractors. The fourth
stimulus, whose location was chosen from the four possible
locations with equal probabilities, was the target. Target and
distractor orientations were independently drawn from a Gauss-
ian distribution with a mean of 0° (vertical) and a standard
deviation of 9.06°.

Experimental Procedures

Each trial started with a fixation dot on a blank screen (500 ms),
followed by a stimulus display (50 ms). Then, a blank screen was
shown until the subject made a response. Subjects pressed a
button to report whether the target was tilted to the right or to
the left relative to vertical. After the response, correctness
feedback was given by coloring the fixation dot red or green
(500 ms; Figure 1A).

The experiment consisted of three sessions on different days.
Each session consisted of five blocks, and each block contained

Figure 1. Task and data. (A) Trial procedure. Each display contains four items, three of which have a common
orientation; these are the distractors. Subjects report whether the fourth item (the target) is tilted to the left or
to the right with respect to vertical. The target location is randomly chosen on every trial. (B) The target
orientation and the common distractor orientation are independently drawn from the same Gaussian distribution
with a mean of 0° (vertical) and a standard deviation of 9.06°. For plotting purposes, we divided orientation space
into 9 quantiles. (C) Proportion of reporting “right” (color, or gray scale) as a function of target and distractor
orientation quantiles. (D) Proportion of reporting “right” as a function of target orientation sT (top) and distractor
orientation sD (bottom). Error bars are standard errors of the mean. The bottom curves are not expected to be
monotonic (see text). See the online article for the color version of this figure.
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200 trials, for a total of 3 # 5 # 200 " 3,000 trials per subject. To
avoid the learning effect, data from the first session (1,000 trials)
were excluded in the analysis. Nine subjects participated in this
study (seven female; age range " 23 to 30 years), all of them
scientifically trained but naïve to the task. At the beginning of the
first session, subjects were orally briefed about all details of the
experimental design. We showed them 10 samples drawn from
the Gaussian stimulus distribution, along with a graph of that
distribution. We explained the distribution as follows: “The target
orientation and the common distractor orientation are drawn from
the same bell-shaped distribution; the orientations are most often
near-vertical, and the width of the distribution is about 10°.”

Experiment 1 Data

Human behavior in this task exhibits several interesting pat-
terns (Figure 1C). The proportion of “right” responses increases
monotonically with target orientation (Figure 1D, top), but also
depends on distractor orientation. More surprising is that the
proportion of “right” responses does not increase monotonically
with distractor orientation (Figure 1D, bottom). On second
thought, this is intuitive: Suppose the target is vertical and the
distractors are slightly tilted to the right. Then, the distractors
can easily be confused with the target, and therefore the subject
will often report “right.” By contrast, when the distractors are
strongly tilted to the right, they are easily identified as distrac-
tors and a sophisticated subject will only use the item that is
most likely to be the target in their response (in this example,
make a random guess).

Models

We study four categories of models: the optimal model, simple
heuristic models, two-step models, and generalized sum models.

The optimal model. The optimal observer has learned the
generative model of the task and incorporates this knowledge
during decision making. We first discuss the generative model
(Figure 2A). We denote the binary variable, C, the direction of tilt
relative to vertical ($1 for left, %1 for right). A distractor orien-
tation sD is drawn from a Gaussian distribution with a mean of 0
and a standard deviation of !s. A target orientation sT is drawn
from that same Gaussian distribution but truncated to only nega-
tive values (when C " $1) or only positive values (when C " 1);
thus, the conditional distribution of sT is a half-Gaussian. Stimuli
appear at four fixed locations. The target location, L, is chosen
with equal probability for each of the four possibilities. The
orientation at that location is sT, and the orientations at the three
other locations are all sD. Finally, we assume that the observer
makes a noisy measurement xi of each orientation. We assume that
each xi is independently drawn from a Gaussian distribution whose
mean is the true stimulus (sT or sD) and whose standard deviation
is !.

We are now ready to describe the optimal observer’s inference
process. Given a set of measurements x " (x1, x2, x3, x4), the
optimal observer considers each item a potential target and com-
putes the weighted average over locations L of the probability that
an assumed target at L was tilted right, with weight given by the
probability that the target was at L. The posterior over C (C " 1
or $1) is

p(C | x) ! !
L!1

N

p(C | x, L)p(L | x), (1)

where N denotes the set size (in our case, N " 4). The weighted
average over L is an example of the Bayesian operation of mar-
ginalization. We can simplify Equation 1 to

Figure 2. Generative model. (A) Each node represents a random variable, each arrow a conditional probability
distribution. Distributions are shown in the equations on the side. N(x; 0, !2) denotes a normal distribution with
a mean of 0 and a variance of !2. H(x) denotes the Heaviside function. 1L denotes a vector in which the Lth entry
equals 1 and all others equal 0. &(x) is the Dirac delta function. This diagram specifies the distribution of the
measurements, x. The optimal observer inverts the generative model and computes the conditional probability
of C given x. (B) Decision boundary of the optimal decision rule if the set size N were equal to 3. Each point
in the three-dimensional space represents a set of measurements x " (x1, x2, x3). On one side of the boundary
(the side that includes the all-positive octant), the optimal observer reports “right,” on the other side, “left.” See
the online article for the color version of this figure.
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p(C | x) ! !
L!1

N p(x | C, L)
p"x | L# p(C)p(x | L)p(L)

p(x)

! p(C)
p(x) !

L!1

N

p(x | C, L)p(L).
(2)

Given that the priors over C and L are uniform, and p(x) is just
a normalization, we only need to compute p(x | C, L), the likeli-
hoods of C " '1 given L. To compute these, the optimal observer
marginalizes over all unknown variables other than C and L. These
variables are the stimulus orientations, s, the values of target and
distractor orientations, sT and sD:

p(x | C, L) ! $ p(x | s)p(s | C, L)ds

! $ $ $ p(x | s)p(s | sT, sD, L)p(sT, sD | C)dsdsTdsD

! $$$ %&
i!1

N

p"xi | si#' "(s # sD # (sT # sD)1L)

$ p(sT | C)p(sD)dsdsTdsD

! "$ p(xL | sT)p(sT | C)dsT#%$ "&i%L
p(xi | sD)#p(sD)dsD',

(3)

where 1L is a vector of zeroes except for a 1 in the Lth dimension
and &(x) is Dirac delta function.

The optimal observer reports “right” when the posterior proba-
bility of a right tilt, p(C " 1 | x), exceeds the posterior probability
of a left tilt, p(C " $1 | x). Starting from Equation 2, we see that
this is the case when

!
L!1

N

p(x | C ! 1, L) & !
L!1

N

p(x | C ! #1, L). (4)

Evaluating Equation 3 and then substituting in Equation 4, we find
that the optimal decision rule (Opt rule) is to report “right” when

!
L!1

N

eWeightL(x)erf

xL

'2

(2% 1
'2 ( 1

's
2'

& 0, (5)

where WeightL(x) reflects the strength of the evidence that the
target is at L:

WeightL(x) ! #
xL

2

2"'s
2 ( '2# #

x!
\L
2

2"'s
2 ( '2

N # 1#
# N # 1

2'2 Var x\L.

(6)

Here, x! \L and Var x\L are the sample mean and variance of x
with the Lth element left out, respectively. The first term in the
expression for WeightL(x) comes from $p"xL ) sT#p"sT ) C#dsT ,
and the other two terms come from $"&i%L p"xi ) sD##p"sD#dsD in
Equation 3. To aid our intuition, we visualize the optimal
decision rule for the hypothetical scenario that set size N " 3,
in Figure 2B.

Each of the components of the weight term has an intuitive
meaning: They can be interpreted as being associated with the
target, the distractor mean, and the distractor variance, respec-
tively. Because both the target orientation and the common dis-
tractor orientation are drawn from a Gaussian distribution with a

mean of 0, the Lth item is more likely to be the target when the Lth

measurement is closer to 0 (target term), and the mean of the mea-
surements at the other locations is closer to 0 (distractor mean
term). Moreover, the subject knows that the three distractor ori-
entations are the same, so an item is more likely to be the target
when the variance of the measurements at the other three locations
is smaller (distractor variance term). In the following, we will
examine whether human subjects take all these aspects of the task
statistics into account.

Simple heuristic models. Several simple heuristic decision
rules are plausible for this task. These rules, some of which
have been widely used in previous studies, postulate how the
observer integrates information across locations. According to
the (signed) Max rule, the observer reports the direction of tilt
of the measurement that is most tilted in either direction (Bal-
dassi & Verghese, 2002; Eckstein, 1998; Green & Swets, 1966;
Nolte & Jaarsma, 1967; Palmer et al., 2000). According to the
Sum rule, the observer reports the direction of tilt of the sum of
the four measurements (Baldassi & Burr, 2000; Green & Swets,
1966; Kramer, Graham, & Yager, 1985; Palmer et al., 2000).
We also conceived three new simple heuristics. According to
the Min rule, the observer reports the direction of tilt of the
measurement that is least tilted in either direction. According to
the Var rule, the observer reports the direction of tilt of the
measurement, which, when left out, leaves the smallest variance
of the remaining three measurements. Finally, according to the
Sign rule, the observer reports the common direction of tilt
when all measurements are tilted in the same direction, and the
least frequent direction of tilt otherwise (guessing in case of a
tie). All of these rules perform above chance, but they make
very different predictions from the Opt rule.

Two-step models. We then considered “two-step models,” in
which the observer does not marginalize over target location but
instead follows a simple strategy of first deciding which item is the
target, then reporting its direction of tilt. This suboptimal decision
process is similar to the Take The Best heuristic algorithm (Gig-
erenzer & Goldstein, 1996), in which decisions are based solely on
the cue that best discriminates between options, and to some other
two-step models in perception (Fleming, Maloney, & Daw, 2013;
Jazayeri & Movshon, 2007).

Different two-step models can be constructed based on how the
target is selected in the first step. One way is to transform the Opt
model into a two-step model by replacing the (optimal) marginal-
ization over L in Equation 1 with (suboptimal) maximization: The
first step is to infer the target location, L̂, and the second step is to
infer the target tilt, Ĉ, given that location:

L̂ ! argmax
L

p(L | x),

Ĉ ! argmax
C

p(C | x, L̂).
(7)

When we evaluate the first line of Equation 7 and make use of
the fact that p(L) is uniform, we get

L̂ ! argmax
L

p(x | L)p(L)
p(x)

! argmax
L

p(x | L)

! argmax
L %$ "&i%L

p(xi | sD)#p(sD)dsD'.

(8)
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Retracing the derivation from Equation 3 to Equation 5 shows
that finding L̂ amounts to maximizing WeightL(x) in Equation 6:

L̂ ! argmax
L

WeightL(x). (9)

The second step is inferring the target tilt if we assume that the
target location is L̂:

Ĉ ! argmax
C

p(x | C, L̂)
p(x | L̂)

p(C)

! argmax
C

p(x | C, L̂)

! argmax
C $ p(xL̂ | sT)p(sT | C)dsT

! sgn xL̂.

The simplicity of this expression is easily understood: If the
observer assumes that the target is in the Lth location, then only the
measurement at that location should be used for the report of target tilt.

Whereas Equation 9 uses the entire WeightL(x) expression to
decide on a target location, we will also consider the possibility that
the target location is decided based on maximizing a subset of the
terms in that expression. This would correspond to taking into account
only part of the statistics of the task. In total, we end up with seven
two-step models. Two of these we discussed already: the Min model
(target term only) and the Var model (distractor variance term only).
The remaining five models we name MaxT2, MaxT12, MaxT13,
MaxT23, and MaxT123 (T refers to term), for which the numbers
refer to the terms kept in the expression.

Generalized sum models. As a third category of suboptimal
models, we considered “generalized sum models”, in which the
observer does marginalize over potential target locations. We
construct this category by systematically perturbing the optimal
decision rule. The perturbation consisted of leaving out a subset
of the terms in the weight term (Equation 6), for a total of seven
models (excluding the null perturbation), which we refer to as
SumErf models. We use the nomenclature SumErfT2, SumErfT12 etc.
in parallel to the two-step models, except that SumErf without any
suffixes is the model in which the weight term is replaced by 0.

A further approximation, erf(x) ( x, results in a total of eight
new models (eight because the null perturbation with this approx-
imation is a new model), which we call SumX models. For
example, SumXT12 replaces “erf” in Equation 5 by the identity
and keeps only the first and second terms in Equation 6. Since the
SumX model in which none of the terms in Equation 6 is kept is
identical to our original Sum model, the SumX category contains
seven new models.

Modeling Methods
Quantifying decision rule complexity. To quantify the com-

putational complexity of the decision rules, we first counted the
number of arithmetic operations. We treated functions of the
measurements x as arguments, as they change from trial to trial.
The other parameters (! and !s) were taken as constants. We
defined four types of operations:

1. Linear operations: addition and subtraction between ar-
guments and constants, or between arguments; multipli-
cation of an argument by a constant.

2. Quadratic operations: multiplication of arguments.

3. Nonlinear operations: nonlinear operations (exponentials,
reciprocals, square root, error functions) of arguments.

4. Sorting operations: taking the maximum or minimum, or
comparing with zero.

We combined products of exponentials of polynomials in x into
a single exponential of a polynomial, and simplified each polyno-
mial expression to have no parentheses. This definition of com-
plexity is designed only for comparing observer decision rules in
a perceptual task.

To evaluate decision rule complexity in a more biological man-
ner, we used a neural encoding model. The observations on a given
trial do not consist of a scalar measurement, x, and noise level, !,
but of a vector of spike counts of a group of orientation-tuned
neurons, r. For spike count variability belonging to the “Poisson-
like” family of distributions (exponential family with linear suffi-
cient statistics), x and !2 can be identified with a · r

b · r and 1
b · r,

respectively, where a and b are constant vectors (Ma, 2010). Then,
we expressed the weight term into a rational polynomial function
and counted the number of occurrences of a · r and b · r. We
counted the other operations in the same way as above.

The results of both quantifications are shown in Table A1 of
the Appendix. According to either measure, the optimal deci-
sion rule is much more complex than any of these simple
heuristic rules, and more complex than some of the two-step
rules. The generalized sum models tend to be similarly complex
to the Opt model. We realize that our ways of quantifying
decision rule complexity are somewhat arbitrary, but this prob-
lem is shared by any study that claims that people use “simple”
decision rules.

Model predictions. Each model had the same two parameters:
sensory precision, J ! 1

'2 (where ! is the standard deviation of the
sensory noise), and lapse rate, ). We tested combinations of parameter
values on grid. The grid for J consisted of 31 equally spaced values
between 0.001 and 0.3. The grid for ) consisted of 51 equally spaced
values between 0 and 1. For each of the 17 models, each of the 31 #
51 parameter combinations, each of the nine subjects, and each of
their 2,000 trials, we computed the probability of reporting “right”
(Ĉ " 1) given the target and distractor orientations, sT and sD, on that
trial, p(Ĉ " 1 | sT, sD, M, J, )), where M denotes a certain model.
Because this probability could not be computed analytically, we used
Monte Carlo simulations with 1,000 sampled measurement vectors
(x1, x2, x3, x4); for each, we applied the model’s decision rule and
counted the proportion of “right” reports. This served as an estimate
of the probability of reporting “right” in the absence of lapses p(Ĉ "
1 | sT, sD, M, J, ) " 0). The probability of reporting “right” in the
presence of lapses was then

p(Ĉ ! 1 | sT, sD, M, J, *)

! (1 # *)p(Ĉ ! 1 | sT, sD, M, J, * ! 0) ( 0.5*.

Model fitting. To fit each model for a given subject, we used
its model predictions obtained above to compute the log likelihood
of the parameter combination (J, )), which is the logarithm of the
probability of all of the subject’s responses given the model and
each parameter combination:
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log LM(J, *) ) log p(data | M, J, *)

! log &
i

Ntrials

p"Ĉi | sT,i, sD,i, M, J, *#

! !
i!1

Ntrials

log p"Ĉi | sT,i, sD,i, M, J, *#

(10)

where i is the trial index, Ntrials is the number of trials, and we have
assumed that there are no sequential dependencies between trials.
We found the values of the parameters on the grid that maximized
log LM(J, )). We verified that, in no case, the maximum was on an
edge of the grid. Using a different method for finding the maxi-
mum of the likelihood function, namely, a custom-built evolution-
ary algorithm, gave approximately the same fits and qualitatively
identical model comparison results.

Model comparison. For Bayesian model comparison, we es-
timated the marginal likelihood of each model for each subject,
p(data | M). We obtained the marginal likelihood of a model by
integrating the parameter likelihood over the parameters,

p(data | M) ! $$ p(data | M, J, *)p(J, *)dJd*

! $$ LM(J, *)p(J, *)dJd*.

For the parameter prior p(J, )), we assumed a uniform distri-
bution on the rectangle defined by the ranges mentioned above.
For numerical convenience, we took the logarithm, giving the log
marginal likelihood (LML):

LML(M) ! log $$ LM(J, *)p(J, *)dJd*

! LLmax(M) ( log $$ e log LM(J,*)#LLmax(M)p(J, *)dJd*,
(11)

where LLmax"M# ! max
J,*

LM"J, *#. This form prevents numerical
problems associated with the integrand becoming too small. We
used a Riemann sum over the previously defined parameter grid to
approximate the integral.

As an alternative to Bayesian model comparison, we could use
one of several well-known information criteria: the Akaike infor-
mation criterion (AIC), a small-sample variant of it (AICc), and
the Bayesian information criterion (BIC). All of these penalize
the maximum log likelihood, LLmax(M), by a term increasing
with the number of free parameters. However, because all
models have two parameters, all penalty terms cancel when
taking the difference between two models, and the difference
reduces to the difference between the models’ LLmax(M) values.
All information criteria therefore yield the same differences,
and we will refer to them as !IC.

Model recovery. To validate our methods, we performed a
model recovery analysis. We generated nine synthetic data sets of

3,000 trials from each one of the 25 models. Each data set corre-
sponded to an actual subject, in the following sense. To make our
synthetic data realistic, we chose each parameter value to be the
weighted average of the maximum-likelihood estimates of that
parameter obtained from the subject’s data under each of the 25
models, weighted by the posterior probability of the model. (Many
other ways of choosing parameters for synthetic data will also
work.) We then fitted each of the 25 models to each of the 225
synthetic data sets. We found that the correct model had the
highest LML and the lowest !IC in the same 137 out of 225 cases.
Most of the confusions (79/88) arose within one of two sets of
models. One set contains the Opt, SunErfT3, SumErfT13,
SumErfT23, SumXT3, SumXT13, SumXT23, and SumXT123
models. The other set contains Sum, MaxT2, SumErf, SumErfT1,
SumErfT2, SumErfT12, SunXT1, SumXT2, and SumXT12.
Within each of these two sets, we cannot distinguish the models.
When we averaged over different data sets generated from the
same model, the correct model won in all cases (25/25; for the
confusion matrix of mean LML, see Figure A1 of the Appendix).

No data set generated from a simple heuristic or a two-step
model was fitted better by the Opt model than by the true model.
Moreover, the LML and !IC differences were large (see Table 1),
indicating that one is very unlikely to mistake data from those
models for being generated from Opt. In other words, the Opt
model is not able to mimic the simple models.

Modeling Results

Comparison between the optimal model and the simple
heuristic models. Figure 3 shows the fits of the Opt model and
the simple heuristic models. The Opt model fits the data best
(Figures 3A to D). In particular, the Opt model accurately accounts
for the counterintuitive nonmonotonicity of proportion correct as a
function of distractor orientation (Figure 1D, bottom; Figure 3D).
All simple heuristic models exhibited systematic, clearly visible
deviations from the data (Figures 3B to D). The LML of the Opt
model exceeded that of the Sum, Max, Min, Var, and Sign models
by 244 ' 48, 161 ' 43, 282 ' 30, 99 ' 28, and 189 ' 32,
respectively (paired t tests, p + .01). The Opt model was most
likely for each of the nine subjects individually. We obtained
nearly identical results using the !IC information criteria (Figure
A2). This suggests that people prioritize optimality over simplicity
in this visual search paradigm.

Comparison between the optimal model and the two-step
models. None of the two-step models fits the data well (Figure
4A to C). Bayesian model comparison confirms this: The mean
LML of the Opt model exceeds that of the two-step models by
253 ' 48, 256 ' 47, 130 ' 34, 38 ' 10, and 126 ' 34 (p * .01).

Table 1
Test for False Alarms in Model Recovery

Opt tested on LML # wins LML difference !IC #wins !IC difference

Simple heuristic 0/45 [$348, $42] (mean –173) 0/45 [42, 347] (mean 173)
Two-step 0/45 [$382, $23] (mean $161) 0/45 [23, 381] (mean 161)
Generalized sum 12/70 [$436, 0] (mean –205) 12/70 [0, 435] (mean 204)

Note. Comparison between the Opt model and other models on synthetic data sets generated with suboptimal
models. LML: log marginal likelihood, !IC: information criterion. #wins indicates the number of data sets for
which the optimal model fits best. For the LML and !IC differences, we are giving the range and the mean.
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The Opt model is more likely than any of the two-step models for
all nine subjects. We obtained nearly identical results using the !IC
information criteria (Figure A2). This suggests that in perceptual
decision making, people do not follow the heuristic of only relying
on the most discriminative cue.

Comparison between the optimal model and the generalized
sum models. So far, none of the simple models tested can
account for human behavior. Among the “generalized sum mod-
els,” those without the distractor variance term (Term 3) fitted
poorly to human data (Figures 5 and 6). The LML of the Opt
model was higher than the log likelihoods of the models without
Term 3 by 256 ' 47 (SumErf), 265 ' 46 (SumErfT1), 256 ' 47
(SumErfT2), 266 ' 46 (SumErfT12), 266 ' 46 (SumXT1), 249 '
48 (SumXT2), and 265 ' 46 (SumXT12; p * .001; Figure 7A, B).
However, models that included Term 3 were not distinguishable
from the Opt model: The LML differences were $1.9 ' 1.3

(SumErfT3, p " .22), 21.7 ' 9.1 (SumErfT13, p " .05), $8.2 '
4.1 (SumErfT23, p " .10), $4.8 ' 3.3 (SumXT3, p " .20),
12.2 ' 5.7 (SumXT13, p " .08), $8.9 ' 5.8 (SumXT23, p " .19),
and $3.1 ' 2.1 (SumXT123, p " .20). We obtained nearly identical
results using the !IC information criteria (Figure A2). Thus, like in the
synthetic data used for model recovery, seven suboptimal models (Sum-
ErfT3, SumErfT13, SumErfT23, SumXT3, SumXT13, SumXT23, and
SumXT123) fitted the data about as well as the Opt model.
However, these are by no means simple models (see Table 1).
Our results suggest that the distractor variance term (Term 3) is a
crucial component of the decision rule, implying that subjects used
the knowledge that the three distractors have the same orientation
in their decision.

Model agreement. We found that seven (of 24) suboptimal
models can describe human behavior equally well as the Opt
model. This might seem unsatisfactory, because it seems that no

Figure 3. Model fits of the Opt model and the simple heuristic models. The Opt model fits better than the
heuristic models. (A) Proportion of reporting “right” (color, or gray scale) as a function of target and distractor
orientation quantiles, for individual subjects. The top plot shows the data, the bottom the fits of the Opt model.
(B) As (A), averaged over subjects. The leftmost plot shows the data from Fig. 1C, the other plots the model fits.
(C) Proportion of reporting “right” as a function of target orientation sT. Circles and error bars: data; shaded
areas: model fits. (D) Proportion of reporting “right” as a function of distractor orientation sD. See the online
article for the color version of this figure.
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definite conclusion can be drawn about whether people are optimal
or not. Instead, we argue that it is flawed to think of the distinction
between optimal and suboptimal models as categorical, and that
the seven well-fitting suboptimal models are, for all practical
purposes, identical to the Opt model. A first hint of this was
provided by the earlier model recovery analysis, in which we
found that models within this group of eight models are indistin-
guishable (Figure A1). However, we can quantify similarity be-
tween models in more detail. We will do this in two ways.

One way to think of model similarity is in terms of predicted
accuracy. We computed the proportion correct predicted by dif-
ferent models given the same set of simulated stimulus vectors
(consisting of 100,000 trials) across a range of values of the noise
parameter ! (0.01 to 10, with a step of 0.01). We found that the
accuracy levels predicted by these eight models are nearly identi-
cal (Figure 8A), which means that observers using any of these
eight decision rules would all obtain near-maximal accuracy.

This analysis still leaves two possibilities: The seven alternative
models do well because they are nearly identical to the Opt model
in their trial-to-trial predictions, or because they account better
than the Opt model for some trials and worse for others. In other
words, we are not just interested in whether an observer uses a rule
that allows near-maximal accuracy for a given noise level but also
in whether they use the specific decision rule in Equation 5.

To distinguish between these possibilities, we examined the
trial-to-trial agreement between the model predictions of the Opt

model and of each alternative model, under a lapse rate of zero. (A
nonzero lapse rate would simply replace some responses by coin
flips and would not change any of the following results.) At each
value of the noise level !, we simulated 100,000 measurement
vectors drawn from the generative model. For each measurement
vector, the Opt and the alternative model make a deterministic
prediction for the binary response. Comparing these predictions
across all measurement vectors, we obtain a “proportion agree-
ment.” We then plotted this quantity as a function of the noise level
! (Figure 8B). The seven models that were indistinguishable from
the Opt model made trial-to-trial predictions that agreed with those
of the Opt model on more than 95% of trials. This shows that the
models that fit about as well as the Opt model do so because the
predictions of these models and the Opt model strongly agree from
trial to trial.

A structure on the space of decision rules? Although we
tested many more models than is common in psychophysics stud-
ies, the set of all possible models is obviously infinite, which make
it hard to infer whether an untested model would fit better. How-
ever, we are in the special circumstance that our models only differ
in their decision rules. Here, we make use of this property to
explore the structure of the decision rule space, with the goal of
making inferences beyond the decision rules that we tested.

In our task, a decision rule is a mapping from a measurement
vector x ! "4 and the parameter ! to a binary response Ĉ " '1.
There are infinitely many such mappings; when we fix !, one can

Figure 4. Model fits of the two-step models. The Opt model fits better than the two-step models. (A)
Proportion of reporting “right” (color, or gray scale) as a function of target and distractor orientation quantiles,
averaged over subjects. The leftmost plot shows the data from Fig. 1C, the other plots the model fits. (B)
Proportion of reporting “right” as a function of target orientation sT. Circles and error bars: data; shaded areas:
model fits. (C) Proportion of reporting “right” as a function of distractor orientation sD. See the online article for
the color version of this figure.
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think of them as different ways of dividing four-dimensional space
into black and white regions (for a three-dimensional analog
showing the decision boundary, see Figure 2B). One could shrink
the space of decision rules by imposing that d must be antisym-
metric under the sign flip x |¡ $x and invariant under permuta-
tions of the elements of x. In addition, one could impose smooth-
ness constraints or neural constraints. Even so, d-space will still be
infinite-dimensional and will not be a vector space in an obvious
way. However, it is possible to equip it with a metric structure,
which we will describe now.

In the previous section, we introduced the proportion of trial-to-trial
agreement between two decision rules. There, it was a function of !,
but we can reduce it to a single number by averaging over !:

Agreement(d1, d2) ! *"d1(x,'),d2(x,')+x,'. (12)

In this equation, & denotes the Kronecker delta function, which
equals 1 when its two subscripted integer arguments are equal to each
other and 0 otherwise. The average *.+ is over everything: noise
realizations, stimuli, and the parameter ! (for which we again use the
range [0, 10]). Agreement is linearly related to the Hamming distance
(Hamming, 1950) computed across the two binary strings of Ĉ values
obtained by evaluating both decision rules on randomly sampled (!,
x) pairs. This means that Agreement equips the space of decision rules
with a metric structure.

The Agreement metric is less general than Kullback–Leibler (KL)
or Jensen-Shannon (JS) divergence: Agreement is designed for com-
paring two deterministic decision rules acting on the same internal
representation, whereas the divergences can be used to characterize

similarity between any two models. However, Agreement has the
advantage of capturing the trial-to-trial similarity between model
predictions: Whereas the divergences only compare the predicted
distributions of responses conditioned on the stimuli, s, Agreement
compares the predicted individual responses conditioned on the in-
ternal representation, x. Consider an example in which a specific
stimulus s is repeated many times, and two Models A and B both
predict the subject to report “right” on 70% of these trials. Then,
KL/JS divergence between A and B will be 0. However, Agreement
between A and B might differ greatly. One extreme possibility is that
A and B make the exact same prediction for every x that is generated
from s, that is, Agreement is 100%. The other extreme possibility is
that A and B make maximally distinct predictions; in this case,
Agreement is only 40%.

Relation between agreement with Opt and goodness of fit.
Now that we have used Agreement to define a structure on model
space, we can examine how goodness of fit (LML) depends on
Agreement. As a first step, we visualized the space of decision
rules using multidimensional scaling. This method converts the
matrix of Agreement values between pairs of decision rules (25 #
24/2 " 300 values in total) into distances in a low-dimensional
space (Borg & Groenen, 2005). We found that the models that lie
farther away from the Opt model in this low-dimensional space
tend to fit worse (Figure 8C). This suggests that Agreement is
informative about goodness of fit. We now examine this sugges-
tion in more detail.

Given a data set, an ideal conclusion to draw would be that one
particular decision rule, say d!, has the highest LML in the space

Figure 5. Model fits of the generalized sum models of the SumErfT! type. Models contain term 3 (SumErfT3,
SumErfT13, and SumErfT23) fit about as well as the Opt model. (A) Proportion of reporting “right” (color, or
gray scale) as a function of target and distractor orientation quantiles, averaged over subjects. The leftmost plot
shows the data from Fig. 1C, the other plots the model fits. (B) Proportion of reporting “right” as a function of
target orientation sT. Circles and error bars: data; shaded areas: model fits. (C) Proportion of reporting “right”
as a function of distractor orientation sD. See the online article for the color version of this figure.
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of all plausible mappings d. In practice, we can only test a small
number of d, so it is helpful to know whether there exists a
monotonic relationship between LML and Agreement with d!.
In fact, a sufficient condition for d! being the only maximum in
all of d-space is that LML is lower whenever Agreement to d!

is lower. The LML landscape does not necessarily obey this
property globally, and is in fact unlikely to; for example, there
could be local maxima (multimodality) or ridges. However, the
property might still hold in most of the d-space, and therefore
we think that the correlation between LML and Agreement
(CLA) is informative.

Across the 25 models we tested, we find that a model’s LML is
strongly correlated with its Agreement with the Opt model, with a
correlation of 0.99 (Figure 8D). The correlation was much lower
when we correlated LML with the Agreement with a model other
than Opt, except for the seven other best models (Figure 9A,
Figure A3). These observations suggest that the more similar a
model’s lapse-free trial-to-trial predictions are to the eight best
models, the better the model (with a lapse rate) fits the human data.

In synthetic data generated using parameters fitted to subject
data (see the “Model recovery” section), CLA with the Opt model
as the reference model was only high when the data were gener-
ated from the seven other best models (Figure 9B, Figure A4).
Moreover, the CLA with a specific model as the reference model
was high when the synthetic data were generated using that model
(Figure 9C, Figure A5). Therefore, the observed high correlation
between a model’s LML on subject data and its Agreement with
one of the eight best models is consistent with the eight best
models being close to the true model underlying the data.

However, this argument relies on the small, rather arbitrary, and
possibly biased set of models that we tested here. In particular, the
high correlation would be unsurprising if the models tested all
reside in a local neighborhood of the Opt model. In addition, a
drawback of the analysis above is that Agreement was defined on
models without a lapse rate, whereas LML was computed on the
same models with a lapse rate. To further investigate how close the
eight best models are to the true model underlying the data, we
now introduce an independent approach.

How Good Are the Best Models?

Here we use an information-theoretical method to determine
how well a model fits in an “absolute” sense, specifically, how
much room there is for an untested model to fit better than the
eight best models. The basic idea can be illustrated with a simple
example: If a biased coin has a probability p of coming up heads,
and we try to account for the outcomes of N independent tosses of
that coin, then the best we can do is to state for each toss that the
probability of heads is p. When N is large, the log likelihood of this
model will be the sum of Np log p, from the heads outcomes, and
N(1–p) log (1–p), from the tails outcomes, which is the negative
entropy of a sequence of this coin’s toss outcomes. No model can
have a higher log likelihood: The log likelihood of any model is
bounded from above by the pure stochasticity of the data. The
argument below amounts to estimating how close the log likeli-
hood of our best models is to the upper bound given by the
negative entropy.

Figure 6. Model fits of generalized sum models of the SumXT! type. Models contain term 3 (SumXT3, SumXT13,
SumXT13, and SumXT123) fit about as well as the Opt model. (A) Proportion of reporting “right” (color, or gray
scale) as a function of target and distractor orientation quantiles, averaged over subjects. The leftmost plot shows the
data from Fig. 1C, the other plots the model fits. (B) Proportion of reporting “right” as a function of target orientation
sT. Circles and error bars: data; shaded areas: model fits. (C) Proportion of reporting “right” as a function of distractor
orientation sD. See the online article for the color version of this figure.
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KL divergence. The data D produced by a model M follow a
probability distribution p(D | M). If we assume that there is a true
model Mtrue, then its data distribution is p(D | Mtrue). A principled
measure of the distance between a model M and the true model,
Mtrue, is the KL divergence between these two data distributions
(Cover & Thomas, 2005):

DKL(p(D | Mtrue)!p(D | M)) ) !
D

p(D | Mtrue) log
p(D | Mtrue)

p(D | M) .

This quantity is always non-negative and can be evaluated as

DKL(p(D | Mtrue)!p(D | M)) ! #H(p(D | Mtrue))

( H(p(D | Mtrue), p(D | M)), (13)

where

H(p(D | Mtrue)) ! #!
D

p(D | Mtrue) log p(D | Mtrue) (14)

is the entropy of the data distribution p(D | Mtrue), and

H(p(D | Mtrue), p(D | M)) ! #!
D

p(D | Mtrue) log p(D | M)

(15)

is the cross-entropy between p(D | Mtrue) and p(D | M), and, as we
will see below, closely related to model log likelihood. Because
DKL is non-negative, the negative entropy is an upper bound on the
negative cross-entropy. The KL divergence corresponds to unex-
plained variation, the entropy to subject stochasticity (“unexplain-
able variation”), and the negative cross-entropy to the goodness of

fit (“explained variation”). Thus, goodness of fit, KL divergence,
and unexplainable variation sum up to a perfect fit (zero). No
model can fit the data better than allowed by the stochasticity of
subject responses.

Both terms in Equation 13 involve a sum over all possible data
sets, Ds, generated from model Mtrue, but we have only a single
one available, namely, the subject data. Therefore, both terms have
to be estimated based on that one data set, which we denote by
“data,” as before. Before we resolve this issue, we will first
simplify Equations 14 and 15 by assuming independence of trials
and discretizing the stimuli.

Negative entropy term. A possible data set consists of a
binary vector of length Ntrials, consisting of %1 and $1 responses:
D ! Ĉ ! ,,1-Ntrials. We now assume that the trials are condition-
ally independent of each other. We can then evaluate the negative
entropy of p(D | Mtrue), starting from Equation 14:

#H(p(Ĉ | Mtrue)) ! !
Ĉ!{,1}Ntrials

p(Ĉ | Mtrue) log p(Ĉ | Mtrue)

! !
Ĉ1!,1

... !
ĈNtrials

!,1
% &

i!1

Ntrials

p(Ĉi | Mtrue)' log % &
i!1

Ntrials

p(Ĉi | Mtrue)',

! !
i!1

Ntrials

!
Ĉi!,1

p(Ĉi | Mtrue) log p(Ĉi | Mtrue)

where Ĉi is the subject’s response on the ith trial.
To make further progress, we need to define unique stimulus

conditions that have sufficiently many trials. To this end, we
binned the data as in Figure 1B: nine quantiles for sT crossed,

Figure 7. Model comparison. (A) Mean and standard error of the mean across subjects of the difference in log
marginal likelihood between each model and the Opt model. (B) Difference in log marginal likelihood between
each model and the Opt model for individual subjects; bars of different colors (or gray scales) represent different
subjects. See the online article for the color version of this figure.
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with nine quantiles for sD. We denote the number of trials when
the stimuli are in the jth stimulus bin (j " 1, . . . , 81) by Nj, and,
among those, the number of trials when the subject responded
“right,” by nj. Thus, we reduce each subject’s data to 81 counts.
We verified that the number of bins did not meaningfully affect
our results.

Using this discretization, the distribution p (Ĉi|Mtrue) is the same
for all trials i in the same stimulus condition. Therefore, we can
group the trials by stimulus bin j, and negative entropy becomes

#H(p(Ĉ | Mtrue)) ! !
j!1

81

Nj !
Ĉj!,1

p(Ĉj | Mtrue) log p(Ĉj | Mtrue).

Defining -j ) p"Ĉj ! 1 ) Mtrue#, the probability of reporting
“right” under the unknown true model, we have

#H(p(Ĉ | Mtrue)) ! !
j!1

81

Nj(-j log -j ( (1 # -j) log (1 # -j)).

(16)
Negative cross-entropy term. We now turn to the cross-

entropy of p(D | Mtrue) and p(D | M), as given by Equation 15. This
term is difficult to estimate, because responses in different
stimulus bins are independent only conditional on the parame-
ters. Unfortunately, the parameters , (J and )) are unknown and
have to be estimated from the data or marginalized over. Here,

Model Agreement with Opt model

Figure 8. Model similarity and goodness of fit. (A) Proportion correct as a function of the noise level ! for all
models. (B) Proportion of trials for which a model makes the same prediction as the Opt model, as a function
of !. (C) Averaged prediction agreement (“Agreement”) visualized using multi-dimensional scaling. Each dot
represents a model, and the distance between two models represents the disagreement between those models. The
color (or gray scale) of a dot represents its log marginal likelihood. Models that agree more with the Opt model
tend to have a higher log marginal likelihood. (D) Mean (open circle) and standard error of the mean (error bar)
across subjects of a model’s log marginal likelihood as a function of its Agreement with the Opt model. Each
dot indicates a model. The solid line represents the best linear fit. r is the Pearson correlation. See the online
article for the color version of this figure.
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the former is easier. For each model, we used every other trial
to obtain maximum likelihood estimates ,̂ of the parameters
(using the same parameter grid as before), and then used these
values to evaluate model predictions on the other half of the
trials. Then, we can use a trial factorization and stimulus
binning analogous to the ones done above for the entropy, to
arrive at

#H(p(Ĉ | Mtrue), p(Ĉ | M, .̂)) ! !
j!1

81

Nj(-j log p(Ĉj ! 1 | M, .̂)

( (1 # -j) log p(Ĉj ! #1 | M, .̂)) (17)

where p(Ĉj | M, ,̂) denotes the probability of response Ĉj under
model M on a trial on which the stimuli are in the jth bin. In
practice, we computed the latter values as a weighted average of
the proportions of Ĉj across a fine grid of stimulus combinations in
the jth bin, with weights given by the probabilities of those stim-
ulus combinations.

Estimating the terms: Deviance approach. We now have
expressions for the two terms in the KL divergence under the trial

factorization and stimulus binning, Equations 16 and 17. The KL
divergence is the difference between these two quantities. In
computing this, we face a problem: {-j}, the predicted proportions
of “right” responses under the true model, are unknown because
the true model is unknown. We will first describe the standard way
to deal with this problem, and then our way.

The standard way to deal with the problem that {-j} are un-
known is to estimate them as the empirical proportions of Ĉj " 1

responses, in other words, as -̂j !
nj

Nj
. Then, the estimator of the

negative entropy becomes

#Ĥ(p(Ĉ | Mtrue)) ! !
j!1

81

Nj(-̂j log -̂j ( (1 # -̂j) log (1 # -̂j))

(18)

and the estimator of the negative cross-entropy becomes

#Ĥ(p(Ĉ | Mtrue), p(Ĉ | M,.̂)) ! LLcv(M), (19)

where
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Figure 9. Correlation between log marginal likelihood and Agreement (CLA) as a potential measure of the
global maximum of goodness of fit in model space. (A) Agreement, and therefore CLA, is computed relative to
a reference model. CLA is high when the reference model is the Opt model (red horizontal line, see also Fig.
8D) or one of the seven other best models (see also Fig. A3). CLA is significantly lower when the reference
model is a different model (Wilcoxon rank-sum test, p " 8.4 # 10$5). (B) Given synthetic data generated from
one of the eight best models, CLA with the Opt model as the reference is high. Given synthetic data generated
from a model outside of the eight best, CLA with the Opt model as the reference is significantly lower (Wilcoxon
rank-sum test, p " 8.4 # 10$5, see also Fig. A4). This serves as a negative control for the high CLA with the
Opt model as a reference (red horizontal line in (A) and Fig. 8D). (C) Given synthetic data generated from any
one model, the CLA with that model as the reference is high (+ 0.9). Moreover, given synthetic data generated
from a model outside of the eight best, the CLA with that model as a reference is significantly higher than given
the real data (Wilcoxon signed-rank test, p " 2.9 # 10$4, see also Fig. A5). This serves as a positive control
for the low CLAs with the models outside of the eight best as reference models (circles in (A)). See the online
article for the color version of this figure.
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LLcv(M) ) !
j!1

81

(nj log p(Ĉj ! 1 | M,.̂)

( (Nj # nj) log p(Ĉj ! #1 | M,.̂)) (20)

is the cross-validated log likelihood of model M (compare Equa-
tion 10). The difference between these two terms is then the
estimator of KL divergence:

D̂KL(p(D | Mtrue) ! p(D | M))

!!
j!1

81

Nj%-̂j log
-̂j

p(Ĉj ! 1 | M,.̂)
( (1 # -̂j) log

1 # -̂j

p(Ĉj ! #1 | M,.̂)'.

Up to an irrelevant factor of 2, this is also known as the deviance
(Wichmann & Hill, 2001). It is common to perform a statistical
test on the deviance to determine whether it is significantly dif-
ferent from 0. If it is not, then the model is statistically “as good
as possible.”

Although such an analysis of deviance is widespread, it suffers
from a fundamental problem: -̂j !

nj

Nj
is an unbiased estimator of

-j, but -̂j log -̂j is not an unbiased estimator of -j log -j. In fact,
the bias in estimating entropy has been characterized in detail
(Grassberger, 1988, 2003). Therefore, we explore a different so-
lution here.

Estimating the terms: New approach.
Negative entropy term. To estimate the negative entropy, we

use the Grassberger estimator (Grassberger, 2003), evaluated on
the same half of the data as used to estimate the cross-entropy:

#HG
ˆ (p(D | Mtrue)) ! #!

j!1

81

Nj"GNj
# 1

N(njGnj
( (Nj # nj)GNj#nj

)#,

(21)

where the numbers Gn are obtained through G0 " 0, G1 " $. $ log
2 (where . . 0.577215 is Euler’s constant), G2 " 2 $ . $ log 2,
and for n / 1, G2n%1 " G2n and G2n(2 ! G2n ( 2

2n(1 . Thus,
G2n ! #0 # log 2 ( 2

1 ( 2
3 ( 2

5 ( 2
2n(1 .

Negative cross-entropy term. The negative cross-entropy term
is linear in -j and therefore does not suffer from the same biased
estimation problem. Therefore, we use the estimator of Equation
19, $Ĥ(p(Ĉ | Mtrue), p(Ĉ | M, ,̂)) " LLcv(M).

KL divergence. Our estimator of the KL divergence is then the
difference of Equations 21 and 19:

D̂KL(p(D | Mtrue) ! p(D | M)) ! #ĤG(p(D | Mtrue) # LLcv(M).

(22)

Significance testing. To test whether DKL is significantly
greater than 0, we can no longer assume a chi-squared distribution,
as is common for establishing significance of deviance (Collett,
2002, Section 3.8; Wichmann & Hill, 2001). In fact, we do not
know how to compute a confidence interval on the expression in
Equation 22. Therefore, we make a further approximation by
regarding our Grassberger estimate of negative entropy as the
truth, and only computing a confidence interval on the cross-
entropy term. This can lead to false alarms (a model is falsely
declared as being substantially different from the truth) but not to
misses; thus, it is a conservative approach if we aim to test whether
our best models are indistinguishable from the truth.

To compute a confidence interval for the cross-entropy, we use
a Bayesian approach (i.e., we compute a credible interval), that is,
we compute the posterior probability distribution over Equation
17. First, we compute the posterior over -j assuming a flat prior;
a Jeffreys prior would not substantially change our results. Then,
the posterior over -j is a beta distribution with mean

nj

Nj
and

variance
"nj(1#"Nj#nj(1#

"nj(2#2"Nj(3# . The next step is to approximate the beta
distribution with a normal distribution with the same mean and
variance, and make use of the independence of the -j. Then, the
posterior over $Ĥ(p(Ĉ | Mtrue), p(Ĉ | M, ,̂)) has mean LLcv as
before (Equation 20), and variance

!
j!1

81 %Nj log
pj"Ĉ ! 1 | M, .̂#

pj"Ĉ ! #1 | M, .̂#'2"nj ( 1#"Nj # nj ( 1#
"Nj ( 2#2"Nj ( 3# .

(23)

This yields a 95% credible interval of the estimate of the KL
divergence:

/#Ĥ(p(D | Mtrue)) # LLcv(M) # 1.96 · 0Var(LLmax(M)),

#Ĥ(p(D | Mtrue)) # LLcv(M) ( 1.96 · 0Var(LLmax(M)) 1.

(24)

For every subject, we computed the LLmax of a random coin-flip
model ($Ntrials · 0.5 log 2), the Grassberger estimate of negative
entropy (Equation 21), LLcv(M) for all models, and the 95%
credible interval of the estimate of the negative cross-entropy for
the Opt model (Equation 24; Figure 10, Table 2). For most sub-
jects, the estimate of negative cross-entropy is lower than the
estimate of negative entropy; for two subjects, they are reversed.
Because it is mathematically impossible for negative cross-entropy to
exceed the negative entropy, this is an indication of estimation error.
For eight of nine subjects, the negative entropy was not significantly
higher than the negative cross-entropy of the Opt model, indicating
that the Opt model fits the data very well in an “absolute” sense (see
Table 2). The same applies to the seven models that are indistinguish-
able from the Opt model (see Table A2).

Across subjects, the mean KL divergence between the Opt
model and the true model is not significantly greater than 0 (p "
.15, one-sided Wilcoxon signed-rank test), confirming that the Opt
model explains most of the explainable variation. The same is true
for the seven other best models (SumErfT3, p " .25; SumErfT13,
p " .13; SumErfT23, p " .25; SumXT3, p " .21; SumXT13, p "
.13; SumXT23, p " .18; SumXT123, p " .21).

We can restate the comparison between negative cross-
entropy and negative entropy in perhaps more intuitive terms.
The negative cross-entropy, when divided by the number of
trials and then exponentiated, represents the geometric mean
probability of the model correctly predicting the subject’s re-
sponse on a given trial. Similarly, the negative entropy divided
by the number of trials and exponentiated represents the geo-
metric mean probability of correctly predicting the subject’s
response on a given trial, given the empirical response frequen-
cies. For example, for the Opt model, the prediction accuracy
values are 0.63 ' 0.01 and 0.62 ' 0.01, respectively (for
individual subjects, see Table 2). This means that the Opt model
predicts subject responses about as well as possible given
random variability in the data. Taken together, these results
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show that there is relatively little room for an untested model to
fit better than our eight best models.

Experiment 2
Although the Opt decision rule was derived using the principles of

Bayesian inference, our finding that the rule describes human behav-
ior well does not imply that people reason with probabilities. In
particular, an observer can, through the trial-to-trial feedback provided
in the experiment, learn the Opt rule as a policy or look-up table,
without ever representing probabilities in their brain. In earlier work,
we therefore distinguished optimal computation from probabilistic
computation (Ma, 2012). In the latter, the observer uses an implicit
representation of sensory uncertainty, or even of an entire probability
distribution over a sensory stimulus, in downstream computation.

There is substantial evidence that people do this (for a review, see Ma
& Jazayeri, 2014), but not much from tasks in which the decision
rules are as complicated as here.

To vary uncertainty, one can vary stimulus reliability. In Experi-
ment 2, we determined whether people are optimal when we train
them at high stimulus reliability and test at low stimulus reliability.
This test is a special case of “Bayesian transfer,” a term coined by
Maloney and Mamassian (2009) to indicate that a truly probabilistic
Bayesian observer should maintain priors, likelihoods, and cost func-
tions as building blocks that can be mixed and matched according to
the task demands. The experimental prediction is that people should
generalize nearly immediately to a new prior, likelihood, or cost
function. In our case, we generalize from a narrow likelihood function
(high stimulus reliability) to a wide one (low stimulus reliability).

Figure 10. Information-theoretical estimate of how good the eight best models are. Each column repre-
sents a subject. For each subject, the red dense dashed line represents an estimate of the negative entropy
of the data, the dot dashed black line the negative cross-entropy between a coin-flip model and the true
model, the blue sparse dashed line an estimate of the negative cross-entropy between the Opt model and the
true model, and the gray lines estimates of the negative cross-entropies between other models and the true
model. The error bar represents an estimate of the 95% credible interval of the negative cross-entropy
between the Opt model and the true model. The estimate of the negative cross-entropy between the Opt
model and the true model is not significantly different from the estimate of the negative entropy of the data
(one-sided Wilcoxon signed-rank test, p " 0.15), suggesting that the Opt model explains most of the
explainable variation. The same holds for the seven other best models (see main text). See the online article
for the color version of this figure.

Table 2
For Most Subjects, KL Divergence Is Not Significantly Different From 0

ID Negative entropy
Prediction accuracy

upper bound
95% CI of negative
cross-entropy of Opt

95% CI of prediction
accuracy of Opt 95% CI of DKL p value

1 –492 .61 [–494, –433] [.61, .65] [–59, –2] .97
2 –470 .63 [–508, –455] [.60, .63] [–15, 38] .20
3 –599 .55 [–632, –590] [.53, .55] [–9, 33] .14
4 –458 .63 [–510, –440] [.60, .64] [–18, 52] .17
5 –448 .64 [–491, –444] [.61, .64] [–4, 43] .05
6 –537 .58 [–545, –482] [.58, .62] [–55, 8] .92
7 –419 .66 [–478, –411] [.62, .66] [–8, 59] .07
8 –376 .69 [–435, –364] [.64, .69] [–8, 59] .10
9 –414 .66 [–476, –418] [.62, .66] [4, 64] .02

Note. The p value is the estimated probability that the negative cross-entropy is equal to or higher than the negative entropy (with higher being
theoretically impossible). CI " confidence interval.
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Method

Experiment 2 was identical to Experiment 1 except for the
following differences. The experiment consisted of three sessions,
held on different days. Each session contained six blocks of 150
trials each. During the instruction phase on the first day, subjects
viewed a plot of the Gaussian orientation distribution p(s) for a
single item; the meaning of this plot was explained to them using
vocabulary that matched their educational background. Subjects
also viewed 30 stimuli whose orientations were drawn from p(s).

Blocks 1 and 4 of each session were training blocks, in which
the stimuli were presented at high contrast (peak luminance of the
Gabor patch " 120 cd/m2), and correctness feedback was provided
after each trial. The other four blocks were testing blocks. The
stimuli in these blocks had lower contrast (peak luminance " 56
cd/m2) and importantly, no feedback was provided. Five subjects
(three female) participated; all were naïve to the goals of experi-
ment.

The instruction and training were intended to make the subjects
learn the stimulus distributions and correct any category (left/right)
biases. However, the likelihood functions on the testing trials
could not be learned from the training trials, because the stimuli
had different reliability.

Results

We performed the same analyses as in Experiment 1 on the
testing trials of Experiment 2. We found that the Opt model is still
one of the best-fitting models (Figure 11A and B), and Bayesian
model comparison revealed model rankings consistent with Ex-
periment 1 (Figure 11C, D). The Opt model and the seven other
best models from Experiment 1 have higher LML than the other
models.

Moreover, the Agreement and information-theoretic analyses
yield the same conclusions as in Experiment 1. First, a model’s
LML is strongly correlated with its Agreement with the Opt model
(r " .99, Figure 11F), and much less with its Agreement with a
model outside of the best eight (Figure 11G). Second, our estimate
of KL divergence between any of the eight best models and the
true model is not significantly different from 0 (Figure 11H; e.g.,
Opt: p " .31, one-sided Wilcoxon signed-ranks test). These results
suggest that sensory uncertainty is internally represented and that
people combine this information with the task demands to achieve
near-optimal performance, instead of using a fixed policy or
look-up table.

Discussion

In a relatively complicated perceptual decision-making task
involving multiple stimuli, we tested the optimal decision rule
against a series of suboptimal rules, including many simple heu-
ristic rules. We found that the optimal rule describes the rich
patterns in human behavior extremely well, and better than the
heuristic rules that we tested.

It should be kept in mind that our model observer is not optimal
in an absolute sense (Ma, 2012) because measurement noise is not
zero. In fact, this noise itself might reflect suboptimality in earlier
stages of processing (Pouget, Beck, Ma, & Latham, 2013), or
reflect attentional limitations (Mazyar et al., 2013). Our notion of
optimality pertains solely to the decision rule applied to noisy
sensory information.

We found that seven suboptimal models fit the data as well as
the Opt model. However, those models are indistinguishable from
the Opt model both in a model recovery test and in trial-to-trial
model agreement. This argues for dropping the hard distinction
between optimal and suboptimal, and instead talking about “mod-
els indistinguishable from optimal.”

Although we tested a relatively large number of models, model
space contains infinitely many more models. Therefore, we intro-
duced and computed two quantities to estimate how well the Opt
model and the seven other best models fit relative to untested
models: (a) the correlation across models between LML and trial-
to-trial agreement with one of the best models, and (b) an estimate
of the KL divergence between the eight best models and the true
model. The first approach defines a structure on the space of
decision rules, but it only applies when decision rules are deter-
ministic and act on the same internal representation. (However, it
can likely be generalized by using KL divergence instead of
Agreement.) The second approach is much more general but
involves many approximations. Taken together, however, we be-
lieve that we have provided evidence that it is difficult to find a
rule that fits the data better than the Opt rule (and rules indistin-
guishable from it).

Even without trial-to-trial feedback, the Opt model still provides
the best fit, and the Opt model is still close to the true model in an
absolute sense, according to both the Agreement analysis and the
KL divergence estimates, suggesting that near-optimal behavior is
not a result of establishing a look-up table through feedback, but is
a result of probabilistic computation.

Figure 11 (opposite). Results of Experiment 2, in which feedback was withheld. (A) Proportion of reporting “right” (color, or gray scale) as a function
of each combination of target and distractor orientation quantiles (1 to 9), averaged over all 5 subjects. The left plot shows the data, the right the fits of
the Opt model. (B) Proportion of reporting “right” as a function of target orientation. Circles and error bars: data; shaded areas: Opt model fits. (C)
Proportion of reporting “right” as a function of distractor orientation. (D) Mean and standard error of the mean across subjects of the log marginal likelihood
of each model relative to the Opt model. Shades of different colors (or gray scale) indicate the category of a model. (E) Log marginal likelihood of each
model minus that of the Opt model, for individual subjects. In the bar plots, each color (or gray scale) represents a different subject. (F) As Fig. 8D, for
Experiment 2. (G) As Fig. 9A, for Experiment 2. CLA is high when the reference model is the Opt model (red horizontal line) or one of the seven other
best models, and significantly lower otherwise (Wilcoxon rank-sum test, p " 8.4 # 10$5). (H) As Fig. 10, for Experiment 2. The estimate of the negative
cross-entropy between the Opt model and the true model is not significantly different from the estimate of the negative entropy of the data (one-sided
Wilcoxon signed-rank test, p " 0.31), suggesting that the Opt model explains most of the explainable variation. The same conclusion holds for the seven
other best models. See the online article for the color version of this figure.
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Although we were able to define “complexity” for our mathe-
matically specified decision rules, the way in which we did so was
rather arbitrary. Coming up with a general definition of the com-
plexity of a mapping between internal representation and decision
might be even more difficult, for several reasons. First, it is unclear
how to define complexity when the decision rule does not admit a
neat mathematical description, as is the case for MAP estimation
when the task distributions are empirical (Griffiths & Tenenbaum,
2006). Second, a mathematically complex computational-level
rule might be simple for neurons to implement—or conversely.
For example, some complex optimization problems can be solved
using “simple” network operations (Deneve, 2008; Hopfield &
Tank, 1985; Hornik, Stinchcombe, & White, 1989; Nessler, Pfe-
iffer, Buesing, & Maass, 2013; Nessler, Pfeiffer, & Maass, 2008).
These ambiguities in the meaning of the complexity or simplicity
of a decision process pose as much of a challenge to those
proposing simple heuristics as an organizing principle as they do to
us. In fact, such ambiguities may make any debate between opti-
mality and simplicity ill-defined. A better-defined broad question
is in what task domains human behavior is indistinguishable from
optimal.

Although it seems safe to claim that subjects are not always
near-optimal in perceptual tasks, the evidence for that statement is
surprisingly weak. First, apparent suboptimality can arise when
there are many parameters to learn, the distributions are complex,
the parameters vary greatly across trials (Landy, Goutcher, Trom-
mershäuser, & Mamassian, 2007), or the subjects are not fully
attending to a stimulus (Morales et al., 2015). However, when
given a large number of training trials (Körding & Wolpert, 2004)
or a real-life backstory (Seydell, McCann, Trommershäuser, &
Knill, 2008), people exhibit near-optimal behavior even under
those conditions. When subjects do not perfectly learn the param-
eters, the optimal model should take into account evolving poste-
riors over those parameters; subjects might then still be optimal,
given the limited information about the parameters they have
available (Fiser, Berkes, Orbán, & Lengyel, 2010). Second, unex-
plained biases that seem suboptimal have been reported when
people estimate the direction of moving dots (Jazayeri &
Movshon, 2007; Rauber & Treue, 1998; Szpiro, Spering, & Car-
rasco, 2014); however, such biases might be caused by the inho-
mogeneous nature of the tuning curves in the population encoding
the stimulus (Wei & Stocker, 2015). Third, it has been suggested
that people use a probability matching strategy, which is subopti-
mal (Wozny, Beierholm, & Shams, 2010). However, evidence in
that study was mixed and somewhat indirect; in a direct compar-
ison of probability matching and optimal estimation, the latter
described human data better (Acuna, Berniker, Fernandes, &
Kording, 2015). In our data, when we tested a probability matching
version of the Opt model on our data, we found that its log
likelihood is lower than that of the original Opt model by 73 ' 23
(see Figure 12), and that the original Opt model is more likely for
all nine subjects. Fourth, in some domains of perception, heuristic
models have historically been popular. An example is the
maximum-of-outputs model in visual search (Nolte & Jaarsma,
1967). However, a review of studies in which that model did well
showed that the optimal model described human data as well or
better (Ma et al., 2015). Thus, when we restrict ourselves to
perceptual studies in which the generative model is well charac-
terized, observers have presumably fully learned the generative

model, and proper model comparison has been performed, strong
evidence for suboptimality in human behavior seems to be absent.
Once recent challenge to this claim involved a task combining an
uncertain perceptual judgment with a speeded reaching movement;
the claim was that subjects’ behavior obeyed a two-step model
(Fleming et al., 2013). This needs to be explored further.

What does our work imply for cognitive decision-making tasks?
In some cases, such as predicting the weather, choosing a job, or
playing chess, it might forever remain unknown whether people
use near-optimal or simple rules, because both optimality and
simplicity are hard to define, and people’s prior beliefs, computa-
tional constraints, and utility functions are unknown and very
difficult to estimate. However, there is a rich arena of cognitive
tasks that are restricted, parameterized, and allow for quantitative
modeling. Examples include the learning of category boundaries
(Ashby & Maddox, 2005), strategies for information gathering
(Coenen, Rehder, & Gureckis, 2015; Steyvers, Tenenbaum,
Wagenmakers, & Blum, 2003; Wason, 1960), estimation of ev-
eryday quantities (Griffiths, Chater, Kemp, Perfors, & Tenenbaum,
2010), category-based induction (Osherson, Smith, Wilkie, López,
& Shafir, 1990), and intuitive physics (Battaglia, Hamrick, &
Tenenbaum, 2013). In all these realms, it is possible and important
to develop large numbers of plausible, suboptimal, simple models
and to perform analyses similar to the ones we did here. This is,
however, rarely done (Bowers & Davis, 2012), placing claims of
near-optimality and Bayesian reasoning in such tasks on shaky
ground. On the other hand, there is also no evidence in any of these
domains that people use simple heuristics as proposed by Giger-
enzer. It might be that people are near-optimal in tasks in which
probabilities have to be manipulated implicitly rather than explic-

Figure 12. Comparison between probability matching version of the Opt
model and the Opt model. Difference in log marginal likelihood between
the probability matching model and the Opt model for individual subjects.
The last column shows the mean and standard error of the mean of this
difference.
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itly (Chen, Ross, & Murphy, 2014; Maloney, Trommershäuser, &
Landy, 2007).

Beyond the task or models studied here, our approach might
help to establish criteria that must be satisfied before it can be
claimed that any one model describes reality: (a) The model should
be compared with, and outperform, a large number of alternative
models; (b) The better the trial-to-trial predictions of the model
agree with that of an alternative model, the better that alternative
model should fit; and (c) The KL divergence between the model
and the underlying true model should not be estimated to be
significantly different from zero.
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Appendix

Decision Rules of All Models

Here, we give for every model the condition for which the observer reports “rightward.”

Optimal Model

Opt: !
L!1

N
erf

xL

'2

(2% 1
'2 ( 1

's
2'exp%#

xL
2

2"'s
2 ( '2# #

x!\L
2

2"'s
2 ( '2

N # 1#
# N # 1

2'2 Var x\L'& 0,

Simple Heuristic Models

Sum: !
L!1

N
xL & 0

Max: xargmax| xL|
L

& 0

Min: xargmin| xL|
L

& 0

Var: xargmax
L

Var x\L & 0

Two-Step Models

MaxT2: xargmax
L

"#x!\L
2 # & 0

MaxT12: xargmax
L %#

xL
2

2"'s
2 ( '2# #

x!\L
2

2"'s
2 ( '2

N # 1#' & 0

MaxT13: xargmax
L %#

xL
2

2"'s
2 ( '2#

#
N#1
2'2

Var x\L' & 0

MaxT23:
xargmax

L %#
x!\L

2

2%'s
2 (

'2

N#1
' #

N#1
2'2

Var x\L' & 0

MaxT123:
xargmax

L %#
xL

2

2"'s
2 ( '2#

#
x!\L

2

2%'s
2 (

'2

N#1
' #

N#1
2'2

Var x\L' & 0

Generalized Sum Models

SumErf: !
L!1

N

erf

xL

'2

(2% 1
'2 ( 1

's
2' & 0

SumErfT1: !
L!1

N

erf

xL

'2

(2% 1
'2 ( 1

's
2'

exp%#
xL

2

2"'s
2 ( '2#' & 0,
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SumErfT2: !
L!1

N

erf

xL

'2

(2% 1
'2 ( 1

's
2'

exp%#
x!\L

2

2"'s
2 ( '2

N # 1#' & 0,

SumErfT3: !
L!1

N

erf

xL

'2

(2% 1
'2 ( 1

's
2'

exp"#N # 1
2'2 Var x\L# & 0,

SumErfT12: !
L!1

N

erf

xL

'2

(2% 1
'2 ( 1

's
2'

exp%#
xL

2

2"'s
2 ( '2# #

x!\L
2

2"'s
2 ( '2

N # 1#' & 0,

SumErfT13: !
L!1

N

erf

xL

'2

(2% 1
'2 ( 1

's
2'

exp%#
xL

2

2"'s
2 ( '2# # N # 1

2'2 Var x\L' & 0,

SumErfT23: !
L!1

N

erf

xL

'2

(2% 1
'2 ( 1

's
2'

exp%#
x!\L

2

2"'s
2 ( '2

N # 1#
# N # 1

2'2 Var x\L' & 0,

SumXT1: !
L!1

N

xL exp%#
xL

2

2"'s
2 ( '2#' & 0,

SumXT2: !
L!1

N

xL exp%#
x!\L

2

2"'s
2 ( '2

N # 1#' & 0,

SumXT3: !
L!1

N

xL exp"#N # 1
2'2 Var x\L# & 0,

SumXT12: !
L!1

N

xL exp%#
xL

2

2"'s
2 ( '2# #

x!\L
2

2"'s
2 ( '2

N # 1#' & 0,

SumXT13: !
L!1

N

xL exp%#
x!\L

2

2"'s
2 ( '2

N # 1#
# N # 1

2'2 Var x\L' & 0,

SumXT23: !
L!1

N

xL exp%#
x!\L

2

2"'s
2 ( '2

N # 1#
# N # 1

2'2 Var x\L' & 0,

SumXT123: !
L!1

N

xL exp%#
xL

2

2"'s
2 ( '2# #

x!\L
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2"'s
2 ( '2

N # 1#
# N # 1

2'2 Var x\L' & 0,
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Table A1
Complexity of Observer Decision Rules

Model

Arithmetic operations Neural operations

Q L NL Sort a · r b · r Q L NL Sort

Opt 32 59 8 1 164 656 724 183 20 1
Sum 0 3 0 1 4 16 15 3 1 1
Max 0 0 4 2 4 4 0 0 4 2
Min 0 0 4 2 4 4 0 0 4 2
Var 28 40 0 2 48 144 164 44 4 2
Sign 0 0 0 4 48 172 188 52 4 2
MaxT2 28 40 0 2 112 412 456 124 4 2
MaxT12 32 48 0 2 104 396 440 108 4 2
MaxT13 32 48 0 2 80 316 356 84 4 2
MaxT23 28 40 0 2 160 652 720 172 4 2
MaxT123 32 48 0 2 4 4 0 11 12 1
SumErf 0 7 4 1 12 16 12 19 20 1
SumErfT1 8 11 8 1 52 176 192 63 20 1
SumErfT2 28 51 8 1 52 148 168 55 20 1
SumErfT3 28 51 8 1 116 416 460 135 20 1
SumErfT12 32 59 8 1 108 400 444 119 20 1
SumErfT13 32 59 8 1 84 328 360 95 20 1
SumErfT23 28 51 8 1 12 16 12 11 12 1
SumXT1 8 7 4 1 52 176 192 55 12 1
SumXT2 28 47 4 1 52 148 162 47 12 1
SumXT3 28 47 4 1 116 416 460 127 12 1
SumXT12 32 55 4 1 108 400 444 111 12 1
SumXT13 32 55 4 1 84 320 360 87 12 1
SumXT23 28 47 4 1 164 656 724 175 12 1
SumXT123 32 55 4 1 164 656 724 183 20 1

Note. The left part of the table shows the number of arithmetic operations of different types in each decision rule: linear operations (L), quadratic
operations (Q), other nonlinear operations (NL), and sorting operations (Sort). The right part of the table shows the numbers of neural operations if the
decision variable were directly transformed into a neural quantity using the theory of probabilistic population codes. All models have only two free
parameters; only the complexity of the observer’s computation differs.
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Figure A1. Model recovery analysis. We tested how well synthetic data sets generated from each model (rows)
were fitted by each model (columns). (A) Model confusion matrix. The color in a cell represents the difference
in log marginal likelihood between a model and the winning model for the corresponding data set. Dark red on
the diagonal means that the model used to generate the data was found to be most likely. (B) As in (A), but with
models clustered by Agreement. Models in red are models with high Agreement to the Opt model. Models in
blue are from a different model set with low Agreement to the Opt model, but similar to each other. Models in
orange have higher Agreement to the Opt than to the blues models, but they are still well distinguishable from
the Opt model. Also refer to Fig. 8C. See the online article for the color version of this figure.
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Figure A2. Model comparison based on information criteria. Mean and standard error of the mean across
subjects of the difference in information criterion (a small-sample variant of the Akaike Information Criterion
or the Bayesian Information Criterion) between each model and the Opt model. Note that all models have two
parameters, therefore all information criteria yield the same differences between models. See the online article
for the color version of this figure.
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Model Agreement with Model X

Figure A3. Correlation between log marginal likelihood and Agreement with any one model given the real
data. Related to Fig. 8D and Fig. 9A. Each plot shows, given the real data, the mean (open circle) and standard
error of the mean (error bar) across subjects of a model’s average log marginal likelihood per trial as a function
of its Agreement with a reference model; the reference model differs between plots. The dashed line represents
the best linear fit. r is the Pearson correlation. The names of eight best models are in boldface. See the online
article for the color version of this figure.

(Appendix continues)
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Model Agreement with Opt model

Figure A4. Correlation between log marginal likelihood and Agreement with the Opt model given synthetic
data generated from any one model. Related to Fig. 9B. For each plot, we generated 9 synthetic data sets from
a different generating model. The plot shows the mean (open circle) and standard error of the mean (error bar)
of a model’s average log marginal likelihood per trial as a function of its Agreement with the Opt model based
on those data sets. The dashed line represents the best linear fit. r is the Pearson correlation. The names of eight
best models are in boldface. Given synthetic data generated from one of the eight best models, the correlation
is high. Given synthetic data generated from a model outside of the eight best, the correlation is low. See the
online article for the color version of this figure.
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Model Agreement with Model X

Figure A5. Correlation between log marginal likelihood and Agreement with a reference model given synthetic
data generated from that reference model. Related to Fig. 9C. For each plot, we generated 9 synthetic data sets
from a different generating model. The plot shows the mean (open circle) and standard error of the mean (error
bar) of a model’s average log marginal likelihood per trial as a function of its Agreement with the generating
model. The dashed line represents the best linear fit. r is the Pearson correlation. Given synthetic data generated
from any one model, the correlation is high. See the online article for the color version of this figure.
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Table A2
For All Models and All Subjects, the Probability That the Negative Cross-Entropy is Equal to or Higher Than the Negative Entropy

Model 1 2 3 4 5 6 7 8 9

Opta .97! .2! .14! .17! .05! .92! .071! .099! .015
Sumb *10$16 *10$3 *10$11 *10$16 .0045 *10$16 *10$16 *10$16 *10$3

Maxb *10$9 .034 *10$5 *10$16 .069! *10$16 *10$16 *10$16 .01
Minb *10$16 *10$16 *10$16 *10$16 *10$16 *10$16 *10$16 *10$16 *10$16

Varb .89! *10$7 .22! .043 *10$16 .98! *10$4 .15! *10$16

Signb *10$3 .062! .0011 *10$5 .15! *10$6 *10$5 *10$16 .005
MaxT2b *10$16 *10$4 *10$13 *10$16 *10$3 *10$16 *10$16 *10$16 *10$6

MaxT12b *10$16 *10$6 *10$16 *10$16 *10$4 *10$16 *10$16 *10$16 *10$8

MaxT13b .73! *10$14 .023 .0053 *10$16 .96! *10$9 .12! *10$16

MaxT23b .94! .073! .28! .12! *10$4 .97! *10$3 .15! *10$7

MaxT123b .82! *10$10 .067! .015 *10$16 .98! *10$7 .12! *10$16

SumErfb *10$16 *10$4 *10$11 *10$16 *10$3 *10$16 *10$16 *10$16 *10$5

SumErfT1 *10$16 *10$4 *10$16 *10$16 .0075 *10$16 *10$16 *10$16 *10$7

SumErfT2 *10$16 *10$4 *10$12 *10$16 *10$3 *10$16 *10$16 *10$16 *10$5

SumErfT3a .96! .47! .16! .33! .068! .93! .13! .15! .024!

SumErfT12 *10$16 *10$10 *10$14 *10$16 *10$4 *10$16 *10$16 *10$16 *10$7

SumErfT13a .96! .096! .18! .29! *10$7 .96! .027 .19! *10$5

SumErfT23a .95! .5! .15! .33! .37! .91! .13! .15! .16!

SumXT1 *10$16 *10$4 *10$16 *10$16 *10$3 *10$16 *10$16 *10$16 *10$6

SumXT2 *10$16 *10$3 *10$12 *10$16 .0016 *10$16 *10$16 *10$16 *10$4

SumXT3a .95! .52! .15! .32! .18! .89! .15! .13! .072!

SumXT12 *10$16 *10$5 *10$14 *10$16 *10$4 *10$16 *10$16 *10$16 *10$7

SumXT13a .96! .25! .17! .33! .0022! .92! .073! .15! .0016
SumXT23a .93! .46! .12! .3! .41! .86! .1! .12! *10$3

SumXT123a .95! .5! .15! .33! .19! .9! .15! .13! .065!

Note. Each column corresponds to a subject. For the eight best models, most subjects have p + .05, indicating these models are good in an “absolute” sense.
a The eight best models. b Simple heuristic models and two-step models.
! p + .05.
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